This thread is specifically about improving Dotty’s type inference. For Scala 2 issues, I suggest opening an issue on github.com/scala/bug/issues
The following shapeless-style derivation of a polymorphic sequence
operation for Option
doesn’t infer a useful type in Scala 3.0.0-M1. The type is checkable but on failure the expected type is not useful.
object Blah {
trait Options[T <: Tuple] {
type Out <: Tuple
def apply(t: T): Option[Out]
}
object Options {
type Aux[T <: Tuple, O <: Tuple] = Options[T] { type Out = O }
implicit def single[H]: Aux[Option[H] *: EmptyTuple, H *: EmptyTuple] =
new Options[Option[H] *: EmptyTuple] {
type Out = H *: EmptyTuple
def apply(t: Option[H] *: EmptyTuple): Option[H *: EmptyTuple] =
t.head.map(_ *: EmptyTuple)
}
implicit def multiple[H, T <: Tuple](
implicit ev: Options[T]
): Aux[Option[H] *: T, H *: ev.Out] =
new Options[Option[H] *: T] {
type Out = H *: ev.Out
def apply(t: Option[H] *: T) =
(t.head.flatMap(h => ev(t.tail).map(t => h *: t)))
}
}
extension [T <: Tuple](t: T)(using ev: Options[T]) {
def sequence: Option[ev.Out] = ev(t)
}
// If we annotate this with an incorrect type it fails to typecheck and gives the inferred
// type as Option[?1.Out] rather than the expected fully-expanded type.
val x: Option[(Int, String, Boolean, Double)] =
(Option(1), Option("x"), Option(true), Option.empty[Double]).sequence
}
Is there a better way to do this?
Maybe the pretty-printer could try harder to get rid of these path-dependent things (bug report welcome), but if we avoid the Aux pattern and just use type parameters the problem goes away too:
object Blah {
trait Options[T <: Tuple, Out] {
def apply(t: T): Option[Out]
}
// one can always define `type Foo[T <: Tuple] = Options[T, _]`
// to hide the parameter.
object Options {
implicit def single[H]: Options[Option[H] *: EmptyTuple, H *: EmptyTuple] =
new Options[Option[H] *: EmptyTuple, H *: EmptyTuple] {
def apply(t: Option[H] *: EmptyTuple): Option[H *: EmptyTuple] =
t.head.map(_ *: EmptyTuple)
}
implicit def multiple[H, T <: Tuple, Tail <: Tuple](
implicit ev: Options[T, Tail]
): Options[Option[H] *: T, H *: Tail] =
new Options[Option[H] *: T, H *: Tail] {
def apply(t: Option[H] *: T) =
(t.head.flatMap(h => ev(t.tail).map(t => h *: t)))
}
}
extension [T <: Tuple, Out](t: T)(using ev: Options[T, Out]) {
def sequence: Option[Out] = ev(t)
}
// OK:
val x: Option[(Int, String, Boolean, Double)] =
(Option(1), Option("x"), Option(true), Option.empty[Double]).sequence
// error: Found: Option[Int *: String *: Boolean *: Double *: EmptyTuple]
// Required: String
val y: String =
(Option(1), Option("x"), Option(true), Option.empty[Double]).sequence
}
This is a pretty interesting gotcha I just stumbled upon: https://scastie.scala-lang.org/8r2pKMoXRyCk1wjUYeccHQ
Inlined:
def isTrue(b: Boolean): Boolean = b
val notTrue = !isTrue(_) // Missing parameter type\n\nI could not infer the type of the parameter _$1
I believe that is !((b: Boolean) => b)
, and since Function1
has no !
method, it gets lost. The error message is deceiving. I expect you intended it to expand like this:
val notTrue = (b: Boolean) => !isTrue(b)
Which compiles fine.
Actually, the error message suggests the expansion is as intended, but then the type inference still fails:
error: missing parameter type for expanded function ((<x$1: error>) => isTrue(x$1).unary_$bang)
Equivalent case without prefix operator:
> def m(i: Int): Int = i
def m(i: Int): Int
> val isFinite = m(_).isFinite
^
error: missing parameter type for expanded function ((<x$1: error>) => m(x$1).isFinite)
Probably moot since we will get Enums in Dotty, but thgis is one that frequently pops up for me and I find it annoying:
trait Error
case class SomethingBadHappened(msg: String) extends Error
case object UnexpectedError extends Error
//plus a few more
def someIO: IO[String, Thing]
def newIO: IO[Error, Thing] = someIO.leftMap(SomethingBadHappened(_)) //expected Error but got SomethingBadHappened
def newIO: IO[Error, Thing] = someIO.leftMap(SomethingBadHappened(_):Error) //compiles fine
also may be missing something with some language design principle, but this seems like a failure of the compiler to me
Uncommenting line 6 works, but would be nice if compiler could infer these instead of Nothing?
I wish I could write compose
as
def compose[G[_]: Functor]: Functor[F[G[_]]] =
Functor.make[F[G[_]]](
[A, B] => f => fga => map(fga)(Functor[G].map(_)(f))
)
That’s not type inference specific though, just syntax. Same for value level functions. This won’t work as well.
def compose[A, B, C](f: A => B, g: B => C): A => C = f(g(_))
Yes, for the composed type, I realised after. We could get that with a composition type operator I guess, e.g.
type ∘[F[_], G[_]] = [A] =>> F[G[A]]
But the type signature for parameters f
and fga
still are type-inference related, right?
Upper bound <: List[Int]
on type constructor F
is not satisfied by List[Int]
instantiation
scala> def f[F[_ <: Int] <: List[Int], A <: Int](as: F[A]) = as
def f[F[_ <: Int] <: List[Int], A <: Int](as: F[A]): F[A]
scala> f(List(42))
^
error: inferred type arguments [List,Int] do not conform to method f's type parameter bounds [F[_ <: Int] <: List[Int],A <: Int]
^
error: type mismatch;
found : List[Int]
required: F[A]
however the following type alias with not bound on the argument A
satisfies it
scala> type Lst[A] = List[Int]
type Lst
scala> f[Lst, Int](List(42))
val res1: Lst[Int] = List(42)
Higher-order unification in general is undecidable, so the compiler has to limit it to a reasonable subset, in particular when checking List[Int] <:< F[A]
we end up checking if List <: F
and Int <: A
, and the first check doesn’t succeed, you can write def f[F[X <: Int] <: List[X], A <: Int](as: F[A]) = as
instead.
The following works as expected in Scala 2:
Seq(1) ++ Seq(Seq(2)).reduce(_ ++ _)
In Scala 3, the compiler complains that value ++ is not a member of IterableOnce[Int]
.
Giving a type hint
Seq(1) ++ (Seq(Seq(2)).reduce(_ ++ _): Seq[Int])
makes the snippet compile.
we end up checking if
List <: F
andInt <: A
, and the first check doesn’t succeed
Why
F[X <: Int] <: List[X]
doesn’t have the same higher-order unification difficulty like
F[X <: Int] <: List[Int]
Isn’t List <: F
check performed in both cases?
Isn’t
List <: F
check performed in both cases?
The issue is that ?F := List
which expands to ?F = [X] =>> List[X]
is not a valid solution to the constraint ?F <: [X <: Int] =>> List[Int]
because we check List[X] <: List[Int]
for an arbitrary X
. Now, could we change the subtyping rules to make this typecheck by instead restricting the check to be done for X <: Int
? I’m not sure, but it relates to some long-standing discussions about how to do subtyping with type lambdas: Subtype checking of type lambdas with bounds is too restrictive · Issue #6320 · lampepfl/dotty · GitHub, Subtype checking of type lambdas with bounds is too restrictive, part 2 · Issue #6499 · lampepfl/dotty · GitHub
sealed trait Foo
case class Foo1() extends Foo
case class Foo2() extends Foo
case class Wrapper[A](a: A)
val x: Wrapper[Foo] = Wrapper(Foo2())
x match {
case w @ Wrapper(_: Foo1) =>
forFoo1(w.asInstanceOf[Wrapper[Foo1]])
case w @ Wrapper(_: Foo2) =>
forFoo2(w.asInstanceOf[Wrapper[Foo2]])
}
def forFoo1(foo1: Wrapper[Foo1]) = {
println("foo1)"sc
}
def forFoo2(foo2: Wrapper[Foo2]) = {
println("foo2")
}
On lines 11 and 13 the compiler already knows, that type of w
is narrowed by pattern matching.
What you’re suggesting would be unsound in general, just because Wrapper(_: Foo1)
matches doesn’t mean that the type argument of Wrapper is Foo1
, it could either be a subtype or a supertype:
val x: Wrapper[Any] = Wrapper(Foo1())
val f = Foo1()
val y: Wrapper[f.type] = Wrapper(f)
Wrapper is invariant, so we can’t allow either x or y to be treated as subtypes of Wrapper[Foo1]
.
A post was split to a new topic: Type inference for the types of params of defs